Automatic localization of anatomical landmarks in head cine fluoroscopy images via deep learning.
Journal:
Medical physics
PMID:
39140650
Abstract
BACKGROUND: Fluoroscopy guided interventions (FGIs) pose a risk of prolonged radiation exposure; personalized patient dosimetry is necessary to improve patient safety during these procedures. However, current FGIs systems do not capture the precise exposure regions of the patient, making it challenging to perform patient-procedure-specific dosimetry. Thus, there is a pressing need to develop approaches to extract and use this information to enable personalized radiation dosimetry for interventional procedures.