Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR.

Journal: Nature communications
PMID:

Abstract

Allosteric drugs offer a new avenue for modern drug design. However, the identification of cryptic allosteric sites presents a formidable challenge. Following the allostery nature of residue-driven conformation transition, we propose a state-of-the-art computational pipeline by developing a residue-intuitive hybrid machine learning (RHML) model coupled with molecular dynamics (MD) simulation, through which we can efficiently identify the allosteric site and allosteric modulator as well as reveal their regulation mechanism. For the clinical target β2-adrenoceptor (β2AR), we discover an additional allosteric site located around residues D79, F282, N318 and S319 and one putative allosteric modulator ZINC5042. Using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and protein structure network (PSN), the allosteric potency and regulation mechanism are probed to further improve identification accuracy. Benefiting from sufficient computational evidence, the experimental assays then validate our predicted allosteric site, negative allosteric potency and regulation pathway, showcasing the effectiveness of the identification pipeline in practice. We expect that it will be applicable to other target proteins.

Authors

  • Xin Chen
    University of Nottingham, Nottingham, United Kingdom.
  • Kexin Wang
    Clifford Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Jianfang Chen
    College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Chao Wu
  • Jun Mao
    Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China.
  • Yuanpeng Song
    College of Chemistry, Sichuan University, Chengdu, China.
  • Yijing Liu
    College of Computer Science, Sichuan University Chengdu 610064 People's Republic of China.
  • Zhenhua Shao
    Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China. zhenhuashao@scu.edu.cn.
  • Xuemei Pu
    College of Chemistry, Sichuan University Chengdu 610064 People's Republic of China xmpuscu@scu.edu.cn +86 028 8541 2290.