Identifying Psychosocial and Ecological Determinants of Enthusiasm In Youth: Integrative Cross-Sectional Analysis Using Machine Learning.
Journal:
JMIR public health and surveillance
PMID:
39264706
Abstract
BACKGROUND: Understanding the factors contributing to mental well-being in youth is a public health priority. Self-reported enthusiasm for the future may be a useful indicator of well-being and has been shown to forecast social and educational success. Typically, cross-domain measures of ecological and health-related factors with relevance to public policy and programming are analyzed either in isolation or in targeted models assessing bivariate interactions. Here, we capitalize on a large provincial data set and machine learning to identify the sociodemographic, experiential, behavioral, and other health-related factors most strongly associated with levels of subjective enthusiasm for the future in a large sample of elementary and secondary school students.