Optoelectronic neuron based on transistor combined with volatile threshold switching memristors for neuromorphic computing.
Journal:
Journal of colloid and interface science
Published Date:
Sep 5, 2024
Abstract
The human perception and learning heavily rely on the visual system, where the retina plays a vital role in preprocessing visual information. Developing neuromorphic vision hardware is based on imitating the neurobiological functions of the retina. In this work, an optoelectronic neuron is developed by combining a gate-modulated PDVT-10 channel with a volatile threshold switching memristor, enabling the achievement of optoelectronic performance through a resistance-matching mechanism. The optoelectronic spiking neuron exhibits the ability to alter its spiking behavior in a manner resembling that of a retina. Incorporating electrical and optical modulation, the artificial neuron accurately replicates neuronal signal transmission in a biologically manner. Moreover, it demonstrates inhibition of neuronal firing during darkness and activation upon exposure to light. Finally, the evaluation of a perceptron spiking neural network utilizing these leaky integrate-and-fire neurons is conducted through simulation to assess its capability in classifying image recognition algorithms. This research offers a hopeful direction for the development of easily expandable and hierarchically structured spiking electronics, broadening the range of potential applications in biomimetic vision within the emerging field of neuromorphic hardware.