Improving drug-target interaction prediction through dual-modality fusion with InteractNet.
Journal:
Journal of bioinformatics and computational biology
PMID:
39573831
Abstract
In the drug discovery process, accurate prediction of drug-target interactions is crucial to accelerate the development of new drugs. However, existing methods still face many challenges in dealing with complex biomolecular interactions. To this end, we propose a new deep learning framework that combines the structural information and sequence features of proteins to provide comprehensive feature representation through bimodal fusion. This framework not only integrates the topological adaptive graph convolutional network and multi-head attention mechanism, but also introduces a self-masked attention mechanism to ensure that each protein binding site can focus on its own unique features and its interaction with the ligand. Experimental results on multiple public datasets show that our method significantly outperforms traditional machine learning and graph neural network methods in predictive performance. In addition, our method can effectively identify and explain key molecular interactions, providing new insights into understanding the complex relationship between drugs and targets.