AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Binding Sites

Showing 1 to 10 of 467 articles

Clear Filters

A KAN-based hybrid deep neural networks for accurate identification of transcription factor binding sites.

PloS one
BACKGROUND: Predicting protein-DNA binding sites in vivo is a challenging but urgent task in many fields such as drug design and development. Most promoters contain many transcription factor (TF) binding sites, yet only a few have been identified thr...

DRLiPS: a novel method for prediction of druggable RNA-small molecule binding pockets using machine learning.

Nucleic acids research
Ribonucleic Acid (RNA) is the central conduit for information transfer in the cell. Identifying potential RNA targets in disease conditions is a challenging task, given the vast repertoire of functional non-coding RNAs in a human cell. A potential dr...

Deep-ProBind: binding protein prediction with transformer-based deep learning model.

BMC bioinformatics
Binding proteins play a crucial role in biological systems by selectively interacting with specific molecules, such as DNA, RNA, or peptides, to regulate various cellular processes. Their ability to recognize and bind target molecules with high speci...

RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning.

Nature communications
RNAs are a vast reservoir of untapped drug targets. Structure-based virtual screening (VS) identifies candidate molecules by leveraging binding site information, traditionally using molecular docking simulations. However, docking struggles to scale w...

TopEC: prediction of Enzyme Commission classes by 3D graph neural networks and localized 3D protein descriptor.

Nature communications
Tools available for inferring enzyme function from general sequence, fold, or evolutionary information are generally successful. However, they can lead to misclassification if a deviation in local structural features influences the function. Here, we...

TRAPT: a multi-stage fused deep learning framework for predicting transcriptional regulators based on large-scale epigenomic data.

Nature communications
It is challenging to identify regulatory transcriptional regulators (TRs), which control gene expression via regulatory elements and epigenomic signals, in context-specific studies on the onset and progression of diseases. The use of large-scale mult...

NAD_MCNN: Combining Protein Language Models and Multiwindow Convolutional Neural Networks for Deacetylase NAD+ Binding Site Prediction.

Chemical biology & drug design
Sirtuins, a class of NAD+ -dependent deacetylases, play a key role in aging, metabolism, and longevity. Their interaction with NAD+ at the catalytic site is crucial for function, but experimental methods to map NAD+ binding sites are time consuming. ...

Predictive biophysical neural network modeling of a compendium of in vivo transcription factor DNA binding profiles for Escherichia coli.

Nature communications
The DNA binding of most Escherichia coli Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of in vivo DNA binding for 139 E. coli TFs us...

Integrating genetic variation with deep learning provides context for variants impacting transcription factor binding during embryogenesis.

Genome research
Understanding how genetic variation impacts transcription factor (TF) binding remains a major challenge, limiting our ability to model disease-associated variants. Here, we used a highly controlled system of F crosses with extensive genetic diversity...

iProtDNA-SMOTE: Enhancing protein-DNA binding sites prediction through imbalanced graph neural networks.

PloS one
Protein-DNA interactions play a crucial role in cellular biology, essential for maintaining life processes and regulating cellular functions. We propose a method called iProtDNA-SMOTE, which utilizes non-equilibrium graph neural networks along with p...