Privacy-preserving federated data access and federated learning: Improved data sharing and AI model development in transfusion medicine.
Journal:
Transfusion
PMID:
39610333
Abstract
BACKGROUND: Health data comprise data from different aspects of healthcare including administrative, digital health, and research-oriented data. Together, health data contribute to and inform healthcare operations, patient care, and research. Integrating artificial intelligence (AI) into healthcare requires understanding these data infrastructures and addressing challenges such as data availability, privacy, and governance. Federated learning (FL), a decentralized AI training approach, addresses these challenges by allowing models to learn from diverse datasets without data leaving its source, thus ensuring privacy and security are maintained. This report introduces FL and discusses its potential in transfusion medicine and blood supply chain management.