Identification of a machine learning-based diagnostic model for axial spondyloarthritis in rheumatological routine care using a random forest approach.

Journal: RMD open
Published Date:

Abstract

OBJECTIVES: In axial spondyloarthritis (axSpA), early diagnosis is crucial, but diagnostic delay remains long and diagnostic criteria do not exist. We aimed to identify a diagnostic model that distinguishes patients with axSpA from patients without axSpA with chronic back pain based on clinical data in routine care.

Authors

  • Imke Redeker
    Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany.
  • Styliani Tsiami
    Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany.
  • Jan Eicker
    Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany.
  • Uta Kiltz
    Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany.
  • David Kiefer
    Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany.
  • Ioana Andreica
    Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany.
  • Philipp Sewerin
    Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany.
  • Xenofon Baraliakos
    Herne, Ruhr-University, Rheumazentrum Ruhrgebiet, Bochum, Germany.