Artificial intelligence-driven intelligent learning models for identification and prediction of cardioneurological disorders: A comprehensive study.
Journal:
Computers in biology and medicine
Published Date:
Nov 20, 2024
Abstract
The integration of Artificial Intelligence (AI) and Intelligent Learning Models (ILMs) in healthcare has transformed the field, offering precise diagnostics, remote monitoring, personalized treatment, and more. Cardioneurological disorders (CD), affecting the cardiovascular and neurological systems, present significant diagnostic and management challenges. Traditional testing methods often lack sensitivity and specificity, leading to delayed or inaccurate diagnoses. AI-driven ILMs trained on large datasets offer promise for accurate identification and prediction of CD by analyzing complex data patterns. However, there is a lack of comprehensive studies reviewing AI applications for the diagnosis of CD and inter related disorders. This paper comprehensively reviews existing integrated solutions involving AI and ILMs in CD, examining their clinical manifestations, epidemiology, diagnostic challenges, and therapeutic considerations. The study examines recent research on CD, reviews AI-driven models' landscape, evaluates existing models, addresses practical considerations, and outlines future research directions. Through this work, we aim to provide insights into the transformative potential of AI-driven ILMs in improving clinical practice and patient outcomes for CD.