Deep-m5U: a deep learning-based approach for RNA 5-methyluridine modification prediction using optimized feature integration.
Journal:
BMC bioinformatics
Published Date:
Nov 19, 2024
Abstract
BACKGROUND: RNA 5-methyluridine (m5U) modifications play a crucial role in biological processes, making their accurate identification a key focus in computational biology. This paper introduces Deep-m5U, a robust predictor designed to enhance the prediction of m5U modifications. The proposed method, named Deep-m5U, utilizes a hybrid pseudo-K-tuple nucleotide composition (PseKNC) for sequence formulation, a Shapley Additive exPlanations (SHAP) algorithm for discriminant feature selection, and a deep neural network (DNN) as the classifier.