Development of an automated artificial intelligence-based system for urogenital schistosomiasis diagnosis using digital image analysis techniques and a robotized microscope.

Journal: PLoS neglected tropical diseases
PMID:

Abstract

BACKGROUND: Urogenital schistosomiasis is considered a Neglected Tropical Disease (NTD) by the World Health Organization (WHO). It is estimated to affect 150 million people worldwide, with a high relevance in resource-poor settings of the African continent. The gold-standard diagnosis is still direct observation of Schistosoma haematobium eggs in urine samples by optical microscopy. Novel diagnostic techniques based on digital image analysis by Artificial Intelligence (AI) tools are a suitable alternative for schistosomiasis diagnosis.

Authors

  • Carles Rubio Maturana
    Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
  • Allisson Dantas de Oliveira
    Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain.
  • Francesc Zarzuela
    Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
  • Edurne Ruiz
    Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
  • Elena Sulleiro
    Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
  • Alejandro Mediavilla
    Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
  • Patricia Martínez-Vallejo
    Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
  • Sergi Nadal
    Database Technologies and Information Group, Service and Information Systems Engineering Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
  • Tomàs Pumarola
    Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
  • Daniel López-Codina
    Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain.
  • Alberto Abelló
    Database Technologies and Information Group, Service and Information Systems Engineering Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
  • Elisa Sayrol
    Tecnocampus, Universitat Pompeu Fabra, Mataró, Spain.
  • Joan Joseph-Munné
    Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.