AGML: Adaptive Graph-Based Multi-Label Learning for Prediction of RBP and as Event Associations During EMT.

Journal: IEEE/ACM transactions on computational biology and bioinformatics
PMID:

Abstract

Increasing evidence has indicated that RNA-binding proteins (RBPs) play an essential role in mediating alternative splicing (AS) events during epithelial-mesenchymal transition (EMT). However, due to the substantial cost and complexity of biological experiments, how AS events are regulated and influenced remains largely unknown. Thus, it is important to construct effective models for inferring hidden RBP-AS event associations during EMT process. In this paper, a novel and efficient model was developed to identify AS event-related candidate RBPs based on Adaptive Graph-based Multi-Label learning (AGML). In particular, we propose to adaptively learn a new affinity graph to capture the intrinsic structure of data for both RBPs and AS events. Multi-view similarity matrices are employed for maintaining the intrinsic structure and guiding the adaptive graph learning. We then simultaneously update the RBP and AS event associations that are predicted from both spaces by applying multi-label learning. The experimental results have shown that our AGML achieved AUC values of 0.9521 and 0.9873 by 5-fold and leave-one-out cross-validations, respectively, indicating the superiority and effectiveness of our proposed model. Furthermore, AGML can serve as an efficient and reliable tool for uncovering novel AS events-associated RBPs and is applicable for predicting the associations between other biological entities.

Authors

  • Yushan Qiu
    College of Mathematics and Statistics, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, China. yushan.qiu@szu.edu.cn.
  • Wensheng Chen
  • Wai-Ki Ching
    Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
  • Hongmin Cai
    School of Computer Science& Engineering, South China University of Technology, Guangdong, China. hmcai@scut.edu.cn.
  • Hao Jiang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.
  • Quan Zou