Learning Motion Primitives for the Quantification and Diagnosis of Mobility Deficits.

Journal: IEEE transactions on bio-medical engineering
Published Date:

Abstract

The severity of mobility deficits is one of the most critical parameters in the diagnosis of Parkinson's disease (PD) and rehabilitation. The current approach for severity evaluation is clinical scaling that relies on a clinician's subjective observations and experience, and the observation in laboratories or clinics may not suffice to reflect the severity of motion deficits as compared to daily living activities. This paper presents an approach to modeling and quantifying the severity of mobility deficits from motion data by using nonintrusive wearable physio-biological sensors. The approach provides a user-specific metric that measures mobility deficits in terms of the quantities of motion primitives that are learned from motion tracking data. The proposed method achieved 99.84% prediction accuracy on laboratory data and 93.95% prediction accuracy on clinical data. This approach presents the potential to supplant traditional observation-based clinical scaling, providing an avenue for real-time feedback to fortify positive progression throughout the course of rehabilitation.

Authors

  • Fujian Yan
  • Jiaqi Gong
    Department of Information Systems, University of Maryland, Baltimore, MD, United States.
  • Qiang Zhang
    Yunan Provincial Center for Disease Control and Prevention, Kunming 650022, China.
  • Hongsheng He