MEFA-Net: A mask enhanced feature aggregation network for polyp segmentation.
Journal:
Computers in biology and medicine
Published Date:
Dec 31, 2024
Abstract
Accurate polyp segmentation is crucial for early diagnosis and treatment of colorectal cancer. This is a challenging task for three main reasons: (i) the problem of model overfitting and weak generalization due to the multi-center distribution of data; (ii) the problem of interclass ambiguity caused by motion blur and overexposure to endoscopic light; and (iii) the problem of intraclass inconsistency caused by the variety of morphologies and sizes of the same type of polyps. To address these challenges, we propose a new high-precision polyp segmentation framework, MEFA-Net, which consists of three modules, including the plug-and-play Mask Enhancement Module (MEG), Separable Path Attention Enhancement Module (SPAE), and Dynamic Global Attention Pool Module (DGAP). Specifically, firstly, the MEG module regionally masks the high-energy regions of the environment and polyps through a mask, which guides the model to rely on only a small amount of information to distinguish between polyps and background features, avoiding the model from overfitting the environmental information, and improving the robustness of the model. At the same time, this module can effectively counteract the "dark corner phenomenon" in the dataset and further improve the generalization performance of the model. Next, the SPAE module can effectively alleviate the inter-class fuzzy problem by strengthening the feature expression. Then, the DGAP module solves the intra-class inconsistency problem by extracting the invariance of scale, shape and position. Finally, we propose a new evaluation metric, MultiColoScore, for comprehensively evaluating the segmentation performance of the model on five datasets with different domains. We evaluated the new method quantitatively and qualitatively on five datasets using four metrics. Experimental results show that MEFA-Net significantly improves the accuracy of polyp segmentation and outperforms current state-of-the-art algorithms. Code posted on https://github.com/847001315/MEFA-Net.