Automatic identification of the endangered hawksbill sea turtle behavior using deep learning and cross-species transfer learning.

Journal: The Journal of experimental biology
PMID:

Abstract

The accelerometer, an onboard sensor, enables remote monitoring of animal posture and movement, allowing researchers to deduce behaviors. Despite the automated analysis capabilities provided by deep learning, data scarcity remains a challenge in ecology. We explored transfer learning to classify behaviors from acceleration data of critically endangered hawksbill sea turtles (Eretmochelys imbricata). Transfer learning reuses a model trained on one task from a large dataset to solve a related task. We applied this method using a model trained on green turtles (Chelonia mydas) and adapted it to identify hawksbill behaviors such as swimming, resting and feeding. We also compared this with a model trained on human activity data. The results showed an 8% and 4% F1-score improvement with transfer learning from green turtle and human datasets, respectively. Transfer learning allows researchers to adapt existing models to their study species, leveraging deep learning and expanding the use of accelerometers for wildlife monitoring.

Authors

  • Lorène Jeantet
    Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178 Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France.
  • Kukhanya Zondo
    African Institute for Mathematical Sciences, Muizenberg, Cape Town, 7945, South Africa.
  • Cyrielle Delvenne
    Unité de Recherche BOREA, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217 Les Anses d'Arlet, Martinique, France.
  • Jordan Martin
    Unité de Recherche BOREA, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217 Les Anses d'Arlet, Martinique, France.
  • Damien Chevallier
    Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178 Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France.
  • Emmanuel Dufourq
    African Institute for Mathematical Sciences, Muizenberg, South Africa.