FedDSS: A data-similarity approach for client selection in horizontal federated learning.
Journal:
International journal of medical informatics
Published Date:
Oct 16, 2024
Abstract
BACKGROUND AND OBJECTIVE: Federated learning (FL) is an emerging distributed learning framework allowing multiple clients (hospitals, institutions, smart devices, etc.) to collaboratively train a centralized machine learning model without disclosing personal data. It has the potential to address several healthcare challenges, including a lack of training data, data privacy, and security concerns. However, model learning under FL is affected by non-i.i.d. data, leading to severe model divergence and reduced performance due to the varying client's data distributions. To address this problem, we propose FedDSS, Federated Data Similarity Selection, a framework that uses a data-similarity approach to select clients, without compromising client data privacy.