AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sepsis

Showing 1 to 10 of 307 articles

Clear Filters

Comparison of different AI systems for diagnosing sepsis, septic shock, and cardiogenic shock: a retrospective study.

Scientific reports
Sepsis, septic shock, and cardiogenic shock are life-threatening conditions associated with high mortality rates, but differentiating them is complex because they share certain symptoms. Using the Medical Information Mart for Intensive Care (MIMIC)-I...

Machine learning model to predict sepsis in ICU patients with intracerebral hemorrhage.

Scientific reports
Patients with intracerebral hemorrhage (ICH) are highly susceptible to sepsis. This study evaluates the efficacy of machine learning (ML) models in predicting sepsis risk in intensive care units (ICUs) patients with ICH. We conducted a retrospective ...

Early prediction of sepsis associated encephalopathy in elderly ICU patients using machine learning models: a retrospective study based on the MIMIC-IV database.

Frontiers in cellular and infection microbiology
BACKGROUND: Sepsis associated encephalopathy (SAE) is prevalent among elderly patients in the ICU and significantly affects patient prognosis. Due to the symptom similarity with other neurological disorders and the absence of specific biomarkers, ear...

Integrating bioinformatics and machine learning to discover sumoylation associated signatures in sepsis.

Scientific reports
Small Ubiquitin-like MOdifier-mediated modification (SUMOylation) is associated with sepsis; however, its molecular mechanism remains unclear. Herein, hub genes and regulatory mechanisms in sepsis was investigated. The GSE65682 and GSE95233 datasets ...

Interpretable machine learning model for predicting delirium in patients with sepsis: a study based on the MIMIC data.

BMC infectious diseases
OBJECTIVE: The aim of this study was to construct interpretable machine learning models to predict the risk of developing delirium in patients with sepsis and to explore the impact of delirium on the 28-day survival rate of patients.

Association between the (neutrophil + monocyte)/albumin ratio and all-cause mortality in sepsis patients: a retrospective cohort study and predictive model establishment according to machine learning.

BMC infectious diseases
INTRODUCTION: Sepsis is a life-threatening condition characterized by widespread inflammatory response syndrome in the body resulting from infection. Previous studies have demonstrated that some inflammatory factors or nutritional elements contribute...

A machine learning model for predicting acute respiratory distress syndrome risk in patients with sepsis using circulating immune cell parameters: a retrospective study.

BMC infectious diseases
BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe complication associated with a high mortality rate in patients with sepsis. Early identification of patients with sepsis at high risk of developing ARDS is crucial for timely interven...

Study on the mechanism of action of the active ingredient of Calculus Bovis in the treatment of sepsis by integrating single-cell sequencing and machine learning.

Medicine
BACKGROUND: Sepsis, a complex inflammatory condition with high mortality rates, lacks effective treatments. This study explores the therapeutic mechanisms of Calculus Bovis in sepsis using network pharmacology and RNA sequencing.

Predictors and associations of complications in ureteroscopy for stone disease using AI: outcomes from the FLEXOR registry.

Urolithiasis
We aimed to develop machine learning(ML) algorithms to evaluate complications of flexible ureteroscopy and laser lithotripsy(fURSL), providing a valid predictive model. 15 ML algorithms were trained on a large number fURSL data from > 6500 patients f...

Development and application of an early prediction model for risk of bloodstream infection based on real-world study.

BMC medical informatics and decision making
BACKGROUND: Bloodstream Infection (BSI) is a severe systemic infectious disease that can lead to sepsis and Multiple Organ Dysfunction Syndrome (MODS), resulting in high mortality rates and posing a major public health burden globally. Early identifi...