Prediction of pre-eclampsia with machine learning approaches: Leveraging important information from routinely collected data.
Journal:
International journal of medical informatics
PMID:
39393122
Abstract
BACKGROUND: Globally, pre-eclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality. PE prediction using routinely collected data has the advantage of being widely applicable, particularly in low-resource settings. Early intervention for high-risk women might reduce PE incidence and related complications. We aimed to replicate our machine learning (ML) published work predicting another maternal condition (gestational diabetes) to (1) predict PE using routine health data, (2) identify the optimal ML model, and (3) compare it with logistic regression approach.