Stacking based ensemble learning framework for identification of nitrotyrosine sites.

Journal: Computers in biology and medicine
PMID:

Abstract

Protein nitrotyrosine is an essential post-translational modification that results from the nitration of tyrosine amino acid residues. This modification is known to be associated with the regulation and characterization of several biological functions and diseases. Therefore, accurate identification of nitrotyrosine sites plays a significant role in the elucidating progress of associated biological signs. In this regard, we reported an accurate computational tool known as iNTyro-Stack for the identification of protein nitrotyrosine sites. iNTyro-Stack is a machine-learning model based on a stacking algorithm. The base classifiers in stacking are selected based on the highest performance. The feature map employed is a linear combination of the amino composition encoding schemes, including the composition of k-spaced amino acid pairs and tri-peptide composition. The recursive feature elimination technique is used for significant feature selection. The performance of the proposed method is evaluated using k-fold cross-validation and independent testing approaches. iNTyro-Stack achieved an accuracy of 86.3% and a Matthews correlation coefficient (MCC) of 72.6% in cross-validation. Its generalization capability was further validated on an imbalanced independent test set, where it attained an accuracy of 69.32%. iNTyro-Stack outperforms existing state-of-the-art methods across both evaluation techniques. The github repository is create to reproduce the method and results of iNTyro-Stack, accessible on: https://github.com/waleed551/iNTyro-Stack/.

Authors

  • Aiman Parvez
    Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, South Korea.
  • Syed Danish Ali
  • Hilal Tayara
    Department of Electronics and Information Engineering, Chonbuk National University, Jeonju 54896, South Korea. Electronic address: hilaltayara@jbnu.ac.kr.
  • Kil To Chong
    Division of Electronic Engineering, and Advanced Research Center of Electronics and Information, Chonbuk National University, Jeonju-Si 54896, South Korea. Electronic address: kitchong@jbnu.ac.kr.