Improved performance of fNIRS-BCI by stacking of deep learning-derived frequency domain features.
Journal:
PloS one
PMID:
40245060
Abstract
The functional near-infrared spectroscopy-based brain-computer interface (fNIRS-BCI) systems recognize patterns in brain signals and generate control commands, thereby enabling individuals with motor disabilities to regain autonomy. In this study hand gripping data is acquired using fNIRS neuroimaging system, preprocessing is performed using nirsLAB and features extraction is performed using deep learning (DL) Algorithms. For feature extraction and classification stack and fft methods are proposed. Convolutional neural networks (CNN), long short-term memory (LSTM), and bidirectional long-short-term memory (Bi-LSTM) are employed to extract features. The stack method classifies these features using a stack model and the fft method enhances features by applying fast Fourier transformation which is followed by classification using a stack model. The proposed methods are applied to fNIRS signals from twenty participants engaged in a two-class hand-gripping motor activity. The classification performance of the proposed methods is compared with conventional CNN, LSTM, and Bi-LSTM algorithms and one another. The proposed fft and stack methods yield 90.11% and 87.00% classification accuracies respectively, which are significantly higher than those achieved by CNN (85.16%), LSTM (79.46%), and Bi-LSTM (81.88%) conventional algorithms. The results show that the proposed stack and fft methods can be effectively used for the classification of the two and three-class problems in fNIRS-BCI applications.