A robust deep learning model for predicting green tea moisture content during fixation using near-infrared spectroscopy: Integration of multi-scale feature fusion and attention mechanisms.
Journal:
Food research international (Ottawa, Ont.)
PMID:
40022390
Abstract
Fixation is a critical step in green tea processing, and the moisture content of the leaves after fixation is a key indicator of the fixation quality. Near-infrared spectroscopy (NIRS)-based moisture detection technology is often applied in the tea processing industry. However, temperature fluctuations during processing can cause changes in the NIRS curves, which in turn affect the accuracy of moisture prediction models based on the spectral data. To address this challenge, NIRS data were collected from samples at various stages of fixation and at different temperatures, and a novel deep learning network (DiSENet) was proposed, which integrates multi-scale feature fusion and attention mechanisms. Using a global modeling approach, the proposed method achieved a coefficient of determination (R) of 0.781 for moisture content prediction, with a root mean square error (RMSE) of 1.720 % and a residual predictive deviation (RPD) of 2.148. On the dataset constructed for this study, DiSENet demonstrated superior predictive accuracy compared to the spectral correction methods of external parameter orthogonalization (EPO) and generalized least squares weighting (GLSW), as well as traditional global modeling methods such as partial least squares regression (PLSR) and support vector regression (SVR). This approach effectively corrects spectral interferences caused by temperature variations, thereby enhancing the accuracy of moisture content prediction. Thus, it offers a reliable solution for real-time, non-destructive moisture detection during tea processing.