Artificial Intelligence Methods in Infection Biology Research.

Journal: Methods in molecular biology (Clifton, N.J.)
Published Date:

Abstract

Despite unprecedented achievements, the domain-specific application of artificial intelligence (AI) in the realm of infection biology was still in its infancy just a couple of years ago. This is largely attributable to the proneness of the infection biology community to shirk quantitative techniques. The so-called "sorting machine" paradigm was prevailing at that time, meaning that AI applications were primarily confined to the automation of tedious laboratory tasks. However, fueled by the severe acute respiratory syndrome coronavirus 2 pandemic, AI-driven applications in infection biology made giant leaps beyond mere automation. Instead, increasingly sophisticated tasks were successfully tackled, thereby ushering in the transition to the "Swiss army knife" paradigm. Incentivized by the urgent need to subdue a raging pandemic, AI achieved maturity in infection biology and became a versatile tool. In this chapter, the maturation of AI in the field of infection biology from the "sorting machine" paradigm to the "Swiss army knife" paradigm is outlined. Successful applications are illustrated for the three data modalities in the domain, that is, images, molecular data, and language data, with a particular emphasis on disentangling host-pathogen interactions. Along the way, fundamental terminology mentioned in the same breath as AI is elaborated on, and relationships between the subfields these terms represent are established. Notably, in order to dispel the fears of infection biologists toward quantitative methodologies and lower the initial hurdle, this chapter features a hands-on guide on software installation, virtual environment setup, data preparation, and utilization of pretrained models at its very end.

Authors

  • Jacob Marcel Anter
    Center for Advanced Systems Understanding (CASUS), Görlitz, Germany.
  • Artur Yakimovich
    MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.