Optimizing multi label student performance prediction with GNN-TINet: A contextual multidimensional deep learning framework.
Journal:
PloS one
PMID:
39841673
Abstract
As education increasingly relies on data-driven methodologies, accurately predicting student performance is essential for implementing timely and effective interventions. The California Student Performance Dataset offers a distinctive basis for analyzing complex elements that affect educational results, such as student demographics, academic behaviours, and emotional health. This study presents the GNN-Transformer-InceptionNet (GNN-TINet) model to overcome the constraints of prior models that fail to effectively capture intricate interactions in multi-label contexts, where students may display numerous performance categories concurrently. The GNN-TINet utilizes InceptionNet, transformer architectures, and graph neural networks (GNN) to improve precision in multi-label student performance forecasting. Advanced preprocessing approaches, such as Contextual Frequency Encoding (CFI) and Contextual Adaptive Imputation (CAI), were used on a dataset of 97,000 occurrences. The model achieved exceptional outcomes, exceeding current standards with a Predictive Consistency Score (PCS) of 0.92 and an accuracy of 98.5%. Exploratory data analysis revealed significant relationships between GPA, homework completion, and parental involvement, emphasizing the complex nature of academic achievement. The results illustrate the GNN-TINet's potential to identify at-risk pupils, providing a robust resource for educators and policymakers to improve learning outcomes. This study enhances educational data mining by enabling focused interventions that promote educational equality, tackling significant challenges in the domain.