Deep learning for the classification of atrial fibrillation using wavelet transform-based visual images.
Journal:
BMC medical informatics and decision making
PMID:
39838437
Abstract
BACKGROUND: As the incidence and prevalence of Atrial Fibrillation (AF) proliferate worldwide, the condition has become the epicenter of a plethora of ECG diagnostic research. In recent diagnostic methodologies, Morse Continuous Wavelet Transform (MsCWT) is a feature extraction technique utilized to draw out distinctive attributes of ECG signals. In our study, we explore the employment of MsCWT in the classification of AF with ECG signals in a continuum.