AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Atrial Fibrillation

Showing 1 to 10 of 303 articles

Clear Filters

Deep learning-based prediction of atrial fibrillation from polar transformed time-frequency electrocardiogram.

PloS one
Portable and wearable electrocardiogram (ECG) devices are increasingly utilized in healthcare for monitoring heart rhythms and detecting cardiac arrhythmias or other heart conditions. The integration of ECG signal visualization with AI-based abnormal...

Enhancing atrial fibrillation detection in PPG analysis with sparse labels through contrastive learning.

Computer methods and programs in biomedicine
BACKGROUND: With the advancements in wearable technology, photoplethysmography (PPG) has emerged as a promising technique for detecting atrial fibrillation (AF) due to its ability to capture cardiovascular information. However, current deep learning-...

Integrating deep learning with ECG, heart rate variability and demographic data for improved detection of atrial fibrillation.

Open heart
BACKGROUND: Atrial fibrillation (AF) is a common but often undiagnosed condition, increasing the risk of stroke and heart failure. Early detection is crucial, yet traditional methods struggle with AF's transient nature. This study investigates how au...

[A lightweight classification network for single-lead atrial fibrillation based on depthwise separable convolution and attention mechanism].

Nan fang yi ke da xue xue bao = Journal of Southern Medical University
OBJECTIVES: To design a deep learning model that balances model complexity and performance to enable its integration into wearable ECG monitoring devices for automated diagnosis of atrial fibrillation.

The impact of training image quality with a novel protocol on artificial intelligence-based LGE-MRI image segmentation for potential atrial fibrillation management.

Computer methods and programs in biomedicine
BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting up to 2 % of the population. Catheter ablation is a promising treatment for AF, particularly for paroxysmal AF patients, but it often has high recurrence rates. Dev...

Detection of atrial fibrillation from pulse waves using convolution neural networks and recurrence-based plots.

Chaos (Woodbury, N.Y.)
We propose a classification method for distinguishing atrial fibrillation from sinus rhythm in pulse-wave measurements obtained with a blood pressure monitor. This method combines recurrence-based plots with convolutional neural networks. Moreover, w...

Patient Perspectives on Conversational Artificial Intelligence for Atrial Fibrillation Self-Management: Qualitative Analysis.

Journal of medical Internet research
BACKGROUND: Conversational artificial intelligence (AI) allows for engaging interactions, however, its acceptability, barriers, and enablers to support patients with atrial fibrillation (AF) are unknown.

A Neural Network for Atrial Fibrillation Detection via PPG.

Studies in health technology and informatics
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with severe complications such as ischemic stroke and heart failure. Early detection is essential for timely intervention; however, traditional diagnostic methods often lack scalab...

Development of an Artificial Intelligence-Enabled Electrocardiography to Detect 23 Cardiac Arrhythmias and Predict Cardiovascular Outcomes.

Journal of medical systems
Arrhythmias are common and can affect individuals with or without structural heart disease. Deep learning models (DLMs) have shown the ability to recognize arrhythmias using 12-lead electrocardiograms (ECGs). However, the limited types of arrhythmias...

Assessment of the long RR intervals using convolutional neural networks in single-lead long-term Holter electrocardiogram recordings.

Scientific reports
Advancements in medical technology have extended long-term electrocardiogram (ECG) monitoring from the traditional 24 h to 7-14 days, significantly enriching ECG data. However, this poses unprecedented challenges for physicians in analyzing these ext...