Predicting metabolite response to dietary intervention using deep learning.

Journal: Nature communications
Published Date:

Abstract

Due to highly personalized biological and lifestyle characteristics, different individuals may have different metabolite responses to specific foods and nutrients. In particular, the gut microbiota, a collection of trillions of microorganisms living in the gastrointestinal tract, is highly personalized and plays a key role in the metabolite responses to foods and nutrients. Accurately predicting metabolite responses to dietary interventions based on individuals' gut microbial compositions holds great promise for precision nutrition. Existing prediction methods are typically limited to traditional machine learning models. Deep learning methods dedicated to such tasks are still lacking. Here we develop a method McMLP (Metabolite response predictor using coupled Multilayer Perceptrons) to fill in this gap. We provide clear evidence that McMLP outperforms existing methods on both synthetic data generated by the microbial consumer-resource model and real data obtained from six dietary intervention studies. Furthermore, we perform sensitivity analysis of McMLP to infer the tripartite food-microbe-metabolite interactions, which are then validated using the ground-truth (or literature evidence) for synthetic (or real) data, respectively. The presented tool has the potential to inform the design of microbiota-based personalized dietary strategies to achieve precision nutrition.

Authors

  • Tong Wang
    School of Public Health, Shanxi Medical University, Taiyuan 030000, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030000, China.
  • Hannah D Holscher
    Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
  • Sergei Maslov
    Biology Department, Brookhaven National Laboratory, Upton, New York, USA.
  • Frank B Hu
    Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
  • Scott T Weiss
    From Research Information Systems and Computing (V.M.C., V.G., S.M.), Partners Healthcare; Boston Children's Hospital Informatics Program (D.D., S.F., G.S.); Harvard Medical School (D.D., S.Y., A.C., M.A.-E.-B., N.A.S., S.M., S.T.W., R.D.); Department of Medicine (S.Y., S.T.W.), Department of Neurosurgery (A.C., M.A.-E.-B., R.D.), Division of Rheumatology, Immunology and Allergy (N.A.S.), and Channing Division of Network Medicine (S.T.W., R.D.), Brigham and Women's Hospital, Boston, MA; Center for Statistical Science (S.Y.), Tsinghua University, Beijing, China; Department of Neurology (S.M.), Massachusetts General Hospital; and Biostatistics (T.C.), Harvard School of Public Health, Boston, MA.
  • Yang-Yu Liu
    Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. yyl@channing.harvard.edu.