Machine Learning-Based Clustering Using a 12-Lead Electrocardiogram in Patients With a Implantable Cardioverter Defibrillator to Identify Future Ventricular Arrhythmia.
Journal:
Circulation journal : official journal of the Japanese Circulation Society
PMID:
39358305
Abstract
BACKGROUND: Implantable cardioverter defibrillators (ICDs) reduce mortality associated with ventricular arrhythmia in high-risk patients with cardiovascular disease. Machine learning (ML) approaches are promising tools in arrhythmia research; however, their application in predicting ventricular arrhythmias in patients with ICDs remains unexplored. We aimed to predict and stratify ventricular arrhythmias requiring ICD therapy using 12-lead electrocardiograms (ECGs) in patients with an ICD.