AIMC Topic: Arrhythmias, Cardiac

Clear Filters Showing 1 to 10 of 287 articles

Evaluation of antiarrhythmia drug through QSPR modeling and multi criteria decision analysis.

Scientific reports
This study explores how topological indices (TIs), which are mathematical descriptors of a drug's molecular structure, can support to predict vital properties and biological activities. This understanding is a key for more effective drug design. We f...

Investigating the Impact of the Stationarity Hypothesis on Heart Failure Detection using Deep Convolutional Scattering Networks and Machine Learning.

Scientific reports
Detection of Cardiovascular Diseases (CVDs) has become crucial nowadays, as the World Health Organization (WHO) declares CVDs as the major leading causes of death in the globe. Moreover, the death rate due to CVDs is expected to rise in the next few ...

Fusion of Personalized Federated Learning (PFL) with Differential Privacy (DP) Learning for Diagnosis of Arrhythmia Disease.

PloS one
This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports ...

Arrhythmia classification based on multi-input convolutional neural network with attention mechanism.

PloS one
Arrhythmia is a prevalent cardiac disorder that can lead to severe complications such as stroke and cardiac arrest. While deep learning has advanced automated ECG analysis, challenges remain in accurately classifying arrhythmias due to signal variabi...

Research on noninvasive electrophysiologic imaging based on cardiac electrophysiology simulation and deep learning methods for the inverse problem.

BMC cardiovascular disorders
BACKGROUND: The risk stratification and prognosis of cardiac arrhythmia depend on the individual condition of patients, while invasive diagnostic methods may be risky to patient health, and current non-invasive diagnostic methods are applicable to fe...

Unveiling fetal heart health: harnessing auto-metric graph neural networks and Hazelnut tree search for ECG-based arrhythmia detection.

Computer methods in biomechanics and biomedical engineering
Fetal electrocardiogram (ECG) provides a non-invasive means to assess fetal heart health, but isolating the fetal signal from the dominant maternal ECG remains challenging. This study introduces the FHH-AMGNN-HTSOA-ECG-AD method for enhanced fetal ar...

Development of an Artificial Intelligence-Enabled Electrocardiography to Detect 23 Cardiac Arrhythmias and Predict Cardiovascular Outcomes.

Journal of medical systems
Arrhythmias are common and can affect individuals with or without structural heart disease. Deep learning models (DLMs) have shown the ability to recognize arrhythmias using 12-lead electrocardiograms (ECGs). However, the limited types of arrhythmias...

Assessment of the long RR intervals using convolutional neural networks in single-lead long-term Holter electrocardiogram recordings.

Scientific reports
Advancements in medical technology have extended long-term electrocardiogram (ECG) monitoring from the traditional 24 h to 7-14 days, significantly enriching ECG data. However, this poses unprecedented challenges for physicians in analyzing these ext...

ECG-based heart arrhythmia classification using feature engineering and a hybrid stacked machine learning.

BMC cardiovascular disorders
A heart arrhythmia refers to a set of conditions characterized by irregular heart- beats, with an increasing mortality rate in recent years. Regular monitoring is essential for effective management, as early detection and timely treatment greatly imp...

Explainable machine learning model based on EEG, ECG, and clinical features for predicting neurological outcomes in cardiac arrest patient.

Scientific reports
Early and accurate prediction of neurological outcomes in comatose patients following cardiac arrest is critical for informed clinical decision-making. Existing studies have predominantly focused on EEG for assessing brain injury, with some exploring...