TIRESIA and TISBE: Explainable Artificial Intelligence Based Web Platforms for the Transparent Assessment of the Developmental Toxicity of Chemicals and Drugs.

Journal: Methods in molecular biology (Clifton, N.J.)
PMID:

Abstract

Developmental toxicity is key human health endpoint, especially relevant for safeguarding maternal and child well-being. It is an object of increasing attention from international regulatory bodies such as the US EPA (US Environmental Protection Agency) and ECHA (European CHemicals Agency). In this challenging scenario, non-test methods employing explainable artificial intelligence based techniques can provide a significant help to derive transparent predictive models whose results can be easily interpreted to assess the developmental toxicity of new chemicals at very early stages. To accomplish this task, we have developed web platforms such as TIRESIA and TISBE.Based on a benchmark dataset, TIRESIA employs an explainable artificial intelligence approach combined with SHAP analysis to unveil the molecular features responsible for calculating the developmental toxicity. Descending from TIRESIA, TISBE employs a larger dataset, an explainable artificial intelligence framework based on a fragment-based fingerprint encoding, a consensus classifier, and a new double top-down applicability domain. We report here some practical examples for getting started with TIRESIA and TISBE.

Authors

  • Maria Vittoria Togo
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Fabrizio Mastrolorito
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Nicola Gambacorta
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Daniela Trisciuzzi
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Anna Rita Tondo
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Francesca Cutropia
    Dipartimento di Farmacia - Scienze del Farmaco, Università degli studi di Bari Aldo Moro, Bari, Italy.
  • Valentina Belgiovine
    Dipartimento di Farmacia - Scienze del Farmaco, Università degli studi di Bari Aldo Moro, Bari, Italy.
  • Cosimo Damiano Altomare
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Nicola Amoroso
    Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: nicola.amoroso@ba.infn.it.
  • Orazio Nicolotti
    Department of Pharmacy- Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
  • Fulvio Ciriaco
    Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.