ResGloTBNet: An interpretable deep residual network with global long-range dependency for tuberculosis screening of sputum smear microscopy images.
Journal:
Medical engineering & physics
PMID:
40057359
Abstract
Tuberculosis is a high-mortality infectious disease. Manual sputum smear microscopy is a common and effective method for screening tuberculosis. However, it is time-consuming, labor-intensive, and has low sensitivity. In this study, we propose ResGloTBNet, a framework that integrates convolutional neural network and graph convolutional network for sputum smear image classification with high discriminative power. In this framework, the global reasoning unit is introduced into the residual structure of ResNet to form the ResGloRe module, which not only fully extracts the local features of the image but also models the global relationship between different regions in the image. Furthermore, we applied activation maximization and class activation mapping to generate explanations for the model's predictions on the test sets. ResGloTBNet achieved remarkable results on a publicly available dataset, reaching 97.2 % accuracy and 99.0 % sensitivity. It also maintained a high level of performance on a private dataset, attaining 98.0 % accuracy and 96.6 % sensitivity. In addition, interpretable analysis demonstrated that ResGloTBNet can effectively identify the features and regions in the input images that contribute the most to the model's predictions, providing valuable insights into the decision-making process of the deep learning model.