Accurate Estimation of Methemoglobin and Oxygen Saturation in Skin Tissue Using Diffuse Reflectance Spectroscopy and Artificial Intelligence.

Journal: Journal of biophotonics
PMID:

Abstract

In this paper, we present a noninvasive method for the accurate estimation of methemoglobin concentration. The proposed technique incorporates a novel machine learning model using the artificial neural network to detect methemoglobin and oxygen saturation from the diffuse reflectance spectra of skin tissue. Sixty-six spectra were simulated using a four-layer tissue model with varying oxygen saturation and methemoglobin concentration. A multifiber probe-based DRS setup in the visible and near-infrared wavelength range was used. The best accuracy, with a mean absolute error (MAE) of 0.0392% for the concentration of methemoglobin and 0.0273% for the percentage of oxygen saturation on the created data set, was achieved. Our method was also experimentally verified using DRS spectra collected from human subjects. Consequently, the findings demonstrate the ability of broadband DRS to noninvasively differentiate subtle changes in methemoglobin and hemoglobin levels despite their overlapping spectral features.

Authors

  • Isra Sahli
    Biomedical Photonics Laboratory, Higher Institute for Laser Research and Applications, Damascus University, Damascus, Syria.
  • Wesam Bachir
    Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland.
  • Moustafa Sayem El-Daher
    Biomedical Photonics Laboratory, Higher Institute for Laser Research and Applications, Damascus University, Damascus, Syria.