Enhancing biomedical named entity recognition with parallel boundary detection and category classification.
Journal:
BMC bioinformatics
PMID:
40000968
Abstract
BACKGROUND: Named entity recognition is a fundamental task in natural language processing. Recognizing entities in biomedical text, known as the BioNER, is particularly crucial for cutting-edge applications. However, BioNER poses greater challenges compared to traditional NER due to (1) nested structures and (2) category correlations inherent in biomedical entities. Recently, various BioNER models have been developed based on region classification or large language models. Despite being successful, these models still struggle to balance handling nested structures and capturing category knowledge.