Temporal and spatial self supervised learning methods for electrocardiograms.
Journal:
Scientific reports
Published Date:
Feb 19, 2025
Abstract
The limited availability of labeled ECG data restricts the application of supervised deep learning methods in ECG detection. Although existing self-supervised learning approaches have been applied to ECG analysis, they are predominantly image-based, which limits their effectiveness. To address these limitations and provide novel insights, we propose a Temporal-Spatial Self-Supervised Learning (TSSL) method specifically designed for ECG detection. TSSL leverages the intrinsic temporal and spatial characteristics of ECG signals to enhance feature representation. Temporally, ECG signals retain consistent identity information over time, enabling the model to generate stable representations for the same individual across different time points while isolating representations of different leads to preserve their unique features. Spatially, ECG signals from various leads capture the heart's activity from different perspectives, revealing both commonalities and distinct patterns. TSSL captures these correlations by maintaining consistency in the relationships between signals and their representations across different leads. Experimental results on the CPSC2018, Chapman, and PTB-XL databases demonstrate that TSSL introduces new capabilities by effectively utilizing temporal and spatial information, achieving superior performance compared to existing methods and approaching the performance of full-label training with only 10% of the labeled data. This highlights TSSL's ability to provide deeper insights and enhanced feature extraction beyond mere performance improvements. We make our code publicly available on https://github.com/cwp9731/temporal-spatial-self-supervised-learning.