Dense convolution-based attention network for Alzheimer's disease classification.
Journal:
Scientific reports
Published Date:
Feb 17, 2025
Abstract
Recently, deep learning-based medical image classification models have made substantial advancements. However, many existing models prioritize performance at the cost of efficiency, limiting their practicality in clinical use. Traditional Convolutional Neural Network (CNN)-based methods, Transformer-based methods, and hybrid approaches combining these two struggle to balance performance and model complexity. To achieve efficient predictions with a low parameter count, we propose DenseAttentionNetwork (DANet), a lightweight model for Alzheimer's disease detection in 3D MRI images. DANet leverages dense connections and a linear attention mechanism to enhance feature extraction and capture long-range dependencies. Its architecture integrates convolutional layers for localized feature extraction with linear attention for global context, enabling efficient multi-scale feature reuse across the network. By replacing traditional self-attention with a parameter-efficient linear attention mechanism, DANet overcomes some limitations of standard self-attention. Extensive experiments across multi-institutional datasets demonstrate that DANet achieves the best performance in area under the receiver operating characteristic curve (AUC), which underscores the model's robustness and effectiveness in capturing relevant features for Alzheimer's disease detection while also attaining a strong accuracy structure with fewer parameters. Visualizations based on activation maps further verify the model's ability to highlight AD-relevant regions in 3D MRI images, providing clinically interpretable insights into disease progression.