DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI.

Journal: NeuroImage
PMID:

Abstract

This paper introduces a novel multimodal and high-resolution human brain cerebellum lobule segmentation method. Unlike current tools that operate at standard resolution (1 mm) or using mono-modal data, the proposed method improves cerebellum lobule segmentation through the use of a multimodal and ultra-high resolution (0.125 mm) training dataset. To develop the method, first, a database of semi-automatically labelled cerebellum lobules was created to train the proposed method with ultra-high resolution T1 and T2 MR images. Then, an ensemble of deep networks has been designed and developed, allowing the proposed method to excel in the complex cerebellum lobule segmentation task, improving precision while being memory efficient. Notably, our approach deviates from the traditional U-Net model by exploring alternative architectures. We have also integrated deep learning with classical machine learning methods incorporating a priori knowledge from multi-atlas segmentation which improved precision and robustness. Finally, a new online pipeline, named DeepCERES, has been developed to make available the proposed method to the scientific community requiring as input only a single T1 MR image at standard resolution.

Authors

  • Sergio Morell-Ortega
    Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address: sermoor1@teleco.upv.es.
  • Marina Ruiz-Perez
    Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
  • Marien Gadea
    Department of Psychobiology, Faculty of Psychology, Universitat de Valencia, Valencia, Spain.
  • Roberto Vivo-Hernando
    Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
  • Gregorio Rubio
    Departamento de matemática aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
  • Fernando Aparici
    Área de Imagen Médica. Hospital Universitario y Politécnico La Fe. Valencia, Spain.
  • Maria de la Iglesia-Vayá
    Foundation for the Promotion of the Research in Healthcare and Biomedicine (FISABIO), Avda. de Catalunya, 21, València, 46020, Spain.
  • Gwenaelle Catheline
    Univ. Bordeaux, CNRS, UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Bordeaux, France.
  • Boris Mansencal
    Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, PICTURA, F-33400 Talence, France.
  • Pierrick Coupé
    Univ. Bordeaux, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France; CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France.
  • Jose V Manjón
    Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address: jmanjon@fis.upv.es.