HEDDI-Net: heterogeneous network embedding for drug-disease association prediction and drug repurposing, with application to Alzheimer's disease.
Journal:
Journal of translational medicine
PMID:
39891114
Abstract
BACKGROUND: The traditional process of developing new drugs is time-consuming and often unsuccessful, making drug repurposing an appealing alternative due to its speed and safety. Graph neural networks (GCNs) have emerged as a leading approach for predicting drug-disease associations by integrating drug and disease-related networks with advanced deep learning algorithms. However, GCNs generally infer association probabilities only for existing drugs and diseases, requiring network re-establishment and retraining for novel entities. Additionally, these methods often struggle with sparse networks and fail to elucidate the biological mechanisms underlying newly predicted drugs.