IDP-EDL: enhancing intrinsically disordered protein prediction by combining protein language model and ensemble deep learning.
Journal:
Briefings in bioinformatics
PMID:
40254833
Abstract
Identification of intrinsically disordered regions (IDRs) in proteins is essential for understanding fundamental cellular processes. The IDRs can be divided into long disordered regions (LDRs) and short disordered regions (SDRs) according to their lengths. In previous studies, most computational methods ignored the differences between LDRs and SDRs, and therefore failed to capture the different patterns of LDRs and SDRs. In this study, we propose IDP-EDL, an ensemble of three predictors. The component predictors were first built based on pretrained protein language model and applied task-specific fine-tuning for short, long, and generic disordered regions. A meta predictor was then trained to integrate three task-specific predictors into the final predictor. The results of experiments show that task-specific supervised fine-tuning can capture the different features of LDRs and SDRs and IDP-EDL can achieve stable performance on datasets with different ratios of LDRs and SDRs. More importantly, IDP-EDL can reach or even surpass state-of-the-art performance than other existing predictors on independent test sets. IDP-EDL is available at https://github.com/joestarXjx/IDP-EDL.