Dual-Filter Cross Attention and Onion Pooling Network for Enhanced Few-Shot Medical Image Segmentation.
Journal:
Sensors (Basel, Switzerland)
Published Date:
Mar 29, 2025
Abstract
Few-shot learning has demonstrated remarkable performance in medical image segmentation. However, existing few-shot medical image segmentation (FSMIS) models often struggle to fully utilize query image information, leading to prototype bias and limited generalization ability. To address these issues, we propose the dual-filter cross attention and onion pooling network (DCOP-Net) for FSMIS. DCOP-Net consists of a prototype learning stage and a segmentation stage. During the prototype learning stage, we introduce a dual-filter cross attention (DFCA) module to avoid entanglement between query background features and support foreground features, effectively integrating query foreground features into support prototypes. Additionally, we design an onion pooling (OP) module that combines eroding mask operations with masked average pooling to generate multiple prototypes, preserving contextual information and mitigating prototype bias. In the segmentation stage, we present a parallel threshold perception (PTP) module to generate robust thresholds for foreground and background differentiation and a query self-reference regularization (QSR) strategy to enhance model accuracy and consistency. Extensive experiments on three publicly available medical image datasets demonstrate that DCOP-Net outperforms state-of-the-art methods, exhibiting superior segmentation and generalization capabilities.