Inter-view contrastive learning and miRNA fusion for lncRNA-protein interaction prediction in heterogeneous graphs.
Journal:
Briefings in bioinformatics
PMID:
40194558
Abstract
Predicting long non-coding RNA (lncRNA)-protein interactions is essential for understanding biological processes and discovering new therapeutic targets. In this study, we propose a novel model based on inter-view contrastive learning and miRNA fusion for lncRNA-protein interaction (LPI) prediction, called ICMF-LPI, which utilizes a heterogeneous information network to enhance LPI prediction. The model integrates miRNA as a mediator, constructing an lncRNA-miRNA-protein network, and employs metapath to extract diverse relationships from heterogeneous graphs. By fusing miRNA-related information and leveraging contrastive learning across inter-views, ICMF-LPI effectively captures potential interactions. Experimental results, including five-fold cross-validation, demonstrate the model's superior performance compared to several state-of-the-art methods, with significant improvements in the area under the receiver operating characteristic curve and the area under the precision-recall curve metrics. Notably, even when direct LPI connections are excluded, ICMF-LPI still achieves competitive predictive accuracy, performing comparably or better than some existing models. This demonstrates that the proposed model is effective in scenarios where direct interaction data are unavailable. This approach offers a promising direction for developing predictive models in bioinformatics, particularly in challenging conditions.