Artificial intelligence: A key fulcrum for addressing complex environmental health issues.
Journal:
Environment international
PMID:
40121790
Abstract
Environmental health (EH) is a complex and interdisciplinary field dedicated to the examination of environmental behaviours, toxicological effects, health risks, and strategies for mitigating harmful environmental factors. Traditional EH research investigates correlations between risk factors and health outcomes through control variables, but this route is difficult to address complex EH issue. Artificial intelligence (AI) technology not only has accelerated the innovation of the scientific research paradigm but also has become an important tool for solving complex EH problems. However, the in-depth and comprehensive implementation of AI in the field of EH still faces many barriers, such as model generalizability, data privacy protection, algorithm transparency, and regulatory and ethical issues. This review focuses on the compound exposures of EH and explores the potential, challenges, and development directions of AI in four key phases of EH research: (1) data collection, fusion, and management, (2) hazard identification and screening, (3) risk modeling and assessment and (4) EH management. It is not difficult to see that in the future, artificial intelligence technology will inevitably carry out multidimensional simulation of complex exposure factors through multi-mode data fusion, so as to achieve accurate identification of environmental health risks, and eventually become an efficient tool for global environmental health management. This review will help researchers re-examine this strategy and provide a reference for AI to solve complex exposure problems.