Automated classification of tertiary lymphoid structures in colorectal cancer using TLS-PAT artificial intelligence tool.
Journal:
Scientific reports
PMID:
40119179
Abstract
Colorectal cancer (CRC) ranks as the third most common and second deadliest cancer worldwide. The immune system, particularly tertiary lymphoid structures (TLS), significantly influences CRC progression and prognosis. TLS maturation, especially in the presence of germinal centers, correlates with improved patient outcomes; however, consistent and objective TLS assessment is hindered by varying histological definitions and limitations of traditional staining methods. This study involved 656 patients with colorectal adenocarcinoma from CHU Brest, France. We employed dual immunohistochemistry staining for CD21 and CD23 to classify TLS maturation stages in whole-slide images and implemented a fivefold cross-validation. Using ResNet50 and Vision Transformer models, we compared various aggregation methods, architectures, and pretraining techniques. Our automated system, TLS-PAT, achieved high accuracy (0.845) and robustness (kappa = 0.761) in classifying TLS maturation, particularly with the Vision Transformer pretrained on ImageNet using Max Confidence aggregation. This AI-driven approach offers a standardized method for automated TLS classification, complementing existing detection techniques. Our open-source tools are designed for easy integration with current methods, paving the way for further research in external datasets and other cancer types.