A hybrid approach for binary and multi-class classification of voice disorders using a pre-trained model and ensemble classifiers.
Journal:
BMC medical informatics and decision making
PMID:
40312383
Abstract
Recent advances in artificial intelligence-based audio and speech processing have increasingly focused on the binary and multi-class classification of voice disorders. Despite progress, achieving high accuracy in multi-class classification remains challenging. This paper proposes a novel hybrid approach using a two-stage framework to enhance voice disorders classification performance, and achieve state-of-the-art accuracies in multi-class classification. Our hybrid approach, combines deep learning features with various powerful classifiers. In the first stage, high-level feature embeddings are extracted from voice data spectrograms using a pre-trained VGGish model. In the second stage, these embeddings are used as input to four different classifiers: Support Vector Machine (SVM), Logistic Regression (LR), Multi-Layer Perceptron (MLP), and an Ensemble Classifier (EC). Experiments are conducted on a subset of the Saarbruecken Voice Database (SVD) for male, female, and combined speakers. For binary classification, VGGish-SVM achieved the highest accuracy for male speakers (82.45% for healthy vs. disordered; 75.45% for hyperfunctional dysphonia vs. vocal fold paresis), while VGGish-EC performed best for female speakers (71.54% for healthy vs. disordered; 68.42% for hyperfunctional dysphonia vs. vocal fold paresis). In multi-class classification, VGGish-SVM outperformed other models, achieving mean accuracies of 77.81% for male speakers, 63.11% for female speakers, and 70.53% for combined genders. We conducted a comparative analysis against related works, including the Mel frequency cepstral coefficient (MFCC), MFCC-glottal features, and features extracted using the wav2vec and HuBERT models with SVM classifier. Results demonstrate that our hybrid approach consistently outperforms these models, especially in multi-class classification tasks. The results show the feasibility of a hybrid framework for voice disorder classification, offering a foundation for refining automated tools that could support clinical assessments with further validation.