Artificial Neural Network - Multi-Objective Genetic Algorithm based optimization for the enhanced pigment accumulation in Synechocystis sp. PCC 6803.
Journal:
BMC biotechnology
PMID:
40089695
Abstract
BACKGROUND: Natural colorants produced by the cyanobacterium include carotenoids, chlorophyll a and phycocyanin. The current study used the Synechocystis sp. PCC 6803 to examine how abiotic stress conditions, such as low temperature as well as high light intensity, affect the pigment accumulations in comparison to the control conditions. Additionally, using the response surface methodology (RSM) and artificial neural network - multi-objective genetic algorithm (ANN-MOGA), the impact of several nitrogen sources such as urea, ammonium chloride, and sodium nitrate as nutritional stress on the pigment accumulations in the Synechocystis sp. PCC 6803 was examined.