Harnessing Electronic Health Records and Artificial Intelligence for Enhanced Cardiovascular Risk Prediction: A Comprehensive Review.

Journal: Journal of the American Heart Association
PMID:

Abstract

Electronic health records (EHR) have revolutionized cardiovascular disease (CVD) research by enabling comprehensive, large-scale, and dynamic data collection. Integrating EHR data with advanced analytical methods, including artificial intelligence (AI), transforms CVD risk prediction and management methodologies. This review examines the advancements and challenges of using EHR in developing CVD prediction models, covering traditional and AI-based approaches. While EHR-based CVD risk prediction has greatly improved, moving from models that integrate real-world data on medication use and imaging, challenges persist regarding data quality, standardization across health care systems, and geographic variability. The complexity of EHR data requires sophisticated computational methods and multidisciplinary approaches for effective CVD risk modeling. AI's deep learning enhances prediction performance but faces limitations in interpretability and the need for validation and recalibration for diverse populations. The future of CVD risk prediction and management increasingly depends on using EHR and AI technologies effectively. Addressing data quality issues and overcoming limitations from retrospective data analysis are critical for improving the reliability and applicability of risk prediction models. Integrating multidimensional data, including environmental, lifestyle, social, and genomic factors, could significantly enhance risk assessment. These models require continuous validation and recalibration to ensure their adaptability to diverse populations and evolving health care environments, providing reassurance about their reliability.

Authors

  • Ming-Lung Tsai
    Division of Cardiology, Department of Internal Medicine New Taipei Municipal Tucheng Hospital New Taipei Taiwan.
  • Kuan-Fu Chen
    College of Intelligent Computing, Chang Gung University, Taoyuan, Taiwan; Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.
  • Pei-Chun Chen
    National Center for Geriatrics and Welfare Research National Health Research Institutes Yunlin Taiwan.