Review of sEMG for Exoskeleton Robots: Motion Intention Recognition Techniques and Applications.
Journal:
Sensors (Basel, Switzerland)
PMID:
40285139
Abstract
The global aging trend is becoming increasingly severe, and the demand for life assistance and medical rehabilitation for frail and disabled elderly people is growing. As the best solution for assisting limb movement, guiding limb rehabilitation, and enhancing limb strength, exoskeleton robots are becoming the focus of attention from all walks of life. This paper reviews the progress of research on upper limb exoskeleton robots, sEMG technology, and intention recognition technology. It analyzes the literature using keyword clustering analysis and comprehensively discusses the application of sEMG technology, deep learning methods, and machine learning methods in the process of human movement intention recognition by exoskeleton robots. It is proposed that the focus of current research is to find algorithms with strong adaptability and high classification accuracy. Finally, traditional machine learning and deep learning algorithms are discussed, and future research directions are proposed, such as using a deep learning algorithm based on multi-information fusion to fuse EEG signals, electromyographic signals, and basic reference signals. A model with stronger generalization ability is obtained after training, thereby improving the accuracy of human movement intention recognition based on sEMG technology, which provides important support for the realization of human-machine fusion-embodied intelligence of exoskeleton robots.