Evaluation of Different Machine Learning Approaches to Predict Antigenic Distance Among Newcastle Disease Virus (NDV) Strains.

Journal: Viruses
PMID:

Abstract

Newcastle disease virus (NDV) continues to present a significant challenge for vaccination due to its rapid evolution and the emergence of new variants. Although molecular and sequence data are now quickly and inexpensively produced, genetic distance rarely serves as a good proxy for cross-protection, while experimental studies to assess antigenic differences are time consuming and resource intensive. In response to these challenges, this study explores and compares several machine learning (ML) methods to predict the antigenic distance between NDV strains as determined by hemagglutination-inhibition (HI) assays. By analyzing F and HN gene sequences alongside corresponding amino acid features, we developed predictive models aimed at estimating antigenic distances. Among the models evaluated, the random forest (RF) approach outperformed traditional linear models, achieving a predictive accuracy with an R value of 0.723 compared to only 0.051 for linear models based on genetic distance alone. This significant improvement demonstrates the usefulness of applying flexible ML approaches as a rapid and reliable tool for vaccine selection, minimizing the need for labor-intensive experimental trials. Moreover, the flexibility of this ML framework holds promise for application to other infectious diseases in both animals and humans, particularly in scenarios where rapid response and ethical constraints limit conventional experimental approaches.

Authors

  • Giovanni Franzo
    Department of Animal Medicine, Production and Health (MAPS), Padua University, 35020 Legnaro, Italy.
  • Alice Fusaro
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
  • Chantal J Snoeck
    Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, Esch-sur-Alzette, L-4354 Luxembourg, Luxembourg.
  • Aleksandar Dodovski
    Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia.
  • Steven Van Borm
    Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, 1180 Ukkel, Belgium.
  • Mieke Steensels
    Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, 1180 Ukkel, Belgium.
  • Vasiliki Christodoulou
    Section Veterinary Services (1417), Laboratory for Animal Health Virology, 79, Athalassa Avenue, Aglantzia, Nicosia 2109, Cyprus.
  • Iuliana Onita
    Institute For Diagnosis and Animal Health, 63, Dr. Staicovici Str., Sector 5, 050557 Bucharest, Romania.
  • Raluca Burlacu
    Institute For Diagnosis and Animal Health, 63, Dr. Staicovici Str., Sector 5, 050557 Bucharest, Romania.
  • Azucena Sánchez Sánchez
    Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, Km 1, 4 Algete, 28110 Madrid, Spain.
  • Ilya A Chvala
    National Reference Laboratory for Avian Influenza and Newcastle Disease, Federal Centre for Animal Health (FGBI "ARRIAH"), Vladimir 600901, Russia.
  • Mia Kim Torchetti
    National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA 50011, USA.
  • Ismaila Shittu
    National Veterinary Research Institute, Vom 93010, Nigeria.
  • Mayowa Olabode
    National Veterinary Research Institute, Vom 93010, Nigeria.
  • Ambra Pastori
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
  • Alessia Schivo
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
  • Angela Salomoni
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
  • Silvia Maniero
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
  • Ilaria Zambon
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
  • Francesco Bonfante
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
  • Isabella Monne
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
  • Mattia Cecchinato
    Department of Animal Medicine, Production and Health (MAPS), Padua University, 35020 Legnaro, Italy.
  • Alessio Bortolami
    Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.