Diagnosis accuracy of machine learning for idiopathic pulmonary fibrosis: a systematic review and meta-analysis.
Journal:
European journal of medical research
PMID:
40235000
Abstract
BACKGROUND: The diagnosis of idiopathic pulmonary fibrosis (IPF) is complex, which requires lung biopsy, if necessary, and multidisciplinary discussions with specialists. Clinical diagnosis of the two ailments is particularly challenging due to the impact of interobserver variability. Several studies have endeavored to utilize image-based machine learning to diagnose IPF and its subtype of usual interstitial pneumonia (UIP). However, the diagnostic accuracy of this approach lacks evidence-based support.