Temporal validation of machine learning models for pre-eclampsia prediction using routinely collected maternal characteristics: A validation study.
Journal:
Computers in biology and medicine
PMID:
40228443
Abstract
BACKGROUND: Pre-eclampsia (PE) contributes to more than one-fourth of all maternal deaths and half a million newborn deaths worldwide every year. Early screening and interventions can reduce PE incidence and related complications. We aim to 1) temporally validate three existing models (two machine learning (ML) and one logistic regression) developed in the same region and 2) compare the performances of the validated ML models with the logistic regression model in PE prediction. This work addresses a gap in the literature by undertaking a comprehensive evaluation of existing risk prediction models, which is an important step to advancing this field.