The Leaky Integrate-and-Fire Neuron Is a Change-Point Detector for Compound Poisson Processes.
Journal:
Neural computation
PMID:
40112139
Abstract
Animal nervous systems can detect changes in their environments within hundredths of a second. They do so by discerning abrupt shifts in sensory neural activity. Many neuroscience studies have employed change-point detection (CPD) algorithms to estimate such abrupt shifts in neural activity. But very few studies have suggested that spiking neurons themselves are online change-point detectors. We show that a leaky integrate-and-fire (LIF) neuron implements an online CPD algorithm for a compound Poisson process. We quantify the CPD performance of an LIF neuron under various regions of its parameter space. We show that CPD can be a recursive algorithm where the output of one algorithm can be input to another. Then we show that a simple feedforward network of LIF neurons can quickly and reliably detect very small changes in input spiking rates. For example, our network detects a 5% change in input rates within 20 ms on average, and false-positive detections are extremely rare. In a rigorous statistical context, we interpret the salient features of the LIF neuron: its membrane potential, synaptic weight, time constant, resting potential, action potentials, and threshold. Our results potentially generalize beyond the LIF neuron model and its associated CPD problem. If spiking neurons perform change-point detection on their inputs, then the electrophysiological properties of their membranes must be related to the spiking statistics of their inputs. We demonstrate one example of this relationship for the LIF neuron and compound Poisson processes and suggest how to test this hypothesis more broadly. Maybe neurons are not noisy devices whose action potentials must be averaged over time or populations. Instead, neurons might implement sophisticated, optimal, and online statistical algorithms on their inputs.