AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Action Potentials

Showing 1 to 10 of 502 articles

Clear Filters

GraphDeep-hERG: Graph Neural Network PharmacoAnalytics for Assessing hERG-Related Cardiotoxicity.

Pharmaceutical research
PURPOSE: The human Ether-a-go-go Related-Gene (hERG) encodes rectifying potassium channels that play a significant role during action potential repolarization of cardiomyocytes. Blockade of the hERG channel by off-target drugs can lead to long QT syn...

Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks.

Nature neuroscience
The temporal order of a sequence of events has been thought to be reflected in the ordered firing of neurons at different phases of theta oscillations. Here we assess this by measuring single neuron activity (1,420 neurons) and local field potentials...

Machine learning and complex network analysis of drug effects on neuronal microelectrode biosensor data.

Scientific reports
Biosensors, such as microelectrode arrays that record in vitro neuronal activity, provide powerful platforms for studying neuroactive substances. This study presents a machine learning workflow to analyze drug-induced changes in neuronal biosensor da...

Research on noninvasive electrophysiologic imaging based on cardiac electrophysiology simulation and deep learning methods for the inverse problem.

BMC cardiovascular disorders
BACKGROUND: The risk stratification and prognosis of cardiac arrhythmia depend on the individual condition of patients, while invasive diagnostic methods may be risky to patient health, and current non-invasive diagnostic methods are applicable to fe...

Heterogeneous quantization regularizes spiking neural network activity.

Scientific reports
The learning and recognition of object features from unregulated input has been a longstanding challenge for artificial intelligence systems. Brains, on the other hand, are adept at learning stable sensory representations given noisy observations, a ...

Finger Vein Recognition Based on Unsupervised Spiking Convolutional Neural Network with Adaptive Firing Threshold.

Sensors (Basel, Switzerland)
Currently, finger vein recognition (FVR) stands as a pioneering biometric technology, with convolutional neural networks (CNNs) and Transformers, among other advanced deep neural networks (DNNs), consistently pushing the boundaries of recognition acc...

ECG-based heart arrhythmia classification using feature engineering and a hybrid stacked machine learning.

BMC cardiovascular disorders
A heart arrhythmia refers to a set of conditions characterized by irregular heart- beats, with an increasing mortality rate in recent years. Regular monitoring is essential for effective management, as early detection and timely treatment greatly imp...

Dynamics of Continuous Attractor Neural Networks With Spike Frequency Adaptation.

Neural computation
Attractor neural networks consider that neural information is stored as stationary states of a dynamical system formed by a large number of interconnected neurons. The attractor property empowers a neural system to encode information robustly, but it...

Neural Code Translation With LIF Neuron Microcircuits.

Neural computation
Spiking neural networks (SNNs) provide an energy-efficient alternative to traditional artificial neural networks, leveraging diverse neural encoding schemes such as rate, time-to-first-spike (TTFS), and population-based binary codes. Each encoding me...

Dynamics and Bifurcation Structure of a Mean-Field Model of Adaptive Exponential Integrate-and-Fire Networks.

Neural computation
The study of brain activity spans diverse scales and levels of description and requires the development of computational models alongside experimental investigations to explore integrations across scales. The high dimensionality of spiking networks p...